Week 6: Deep Learning

From CS231, 2017, Stanford

Sciences U Lyon

Computer Vision Challenges

Image Classification: A core task in Computer Vision

This image by Nikita is licensed under CC-BY 2.0 (assume given set of discrete labels) {dog, cat, truck, plane, ...}

Fei-Fei Li & Justin Johnson & Serena Yeung

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 2 - 7

Challenges: Viewpoint variation

This image by Nikita is licensed under CC-BY 2.0

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 2 - 8

Challenges: Illumination

This image is CC0 1.0 public domain

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 2 - 9

Challenges: Deformation

This image by Umberto Salvagnin is licensed under CC-BY 2.0

This image by Umberto Salvagnin is licensed under CC-BY 2.0

This image by sare bear is licensed under CC-BY 2.0

This image by Tom Thai is licensed under CC-BY 2.0

April 6, 2017

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 2 - 10

Challenges: Occlusion

This image is CC0 1.0 public domain

This image is CC0 1.0 public domain

This image by jonsson is licensed under CC-BY 2.0

April 6, 2017

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 2 - 11

Challenges: Background Clutter

This image is CC0 1.0 public domain

This image is CC0 1.0 public domain

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 2 - 12

Challenges: Intraclass variation

This image is CC0 1.0 public domain

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 2 - 13

Attempts have been made

John Canny, "A Computational Approach to Edge Detection", IEEE TPAMI 1986

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 2 - 15

Data-Driven Approach

- 1. Collect a dataset of images and labels
- 2. Use Machine Learning to train a classifier
- 3. Evaluate the classifier on new images

```
def train(images, labels):
    # Machine learning!
    return model

def predict(model, test_images):
    # Use model to predict labels
    return test_labels
```

Example training set

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 2 - 16

First classifier: Nearest Neighbor

def train(images, labels):
 # Machine learning!
 return model

Memorize all data and labels

def predict(model, test_images):
 # Use model to predict labels
 return test_labels

Predict the label
 of the most similar training image

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 2 - 17

Example Dataset: CIFAR10

10 classes 50,000 training images 10,000 testing images

airplane	🔍 🌌 🧺 🛩 🔜 💌 🔍	道来
automobile	📸 🎜 🥌 🥌 🏹 🛸	-
bird	a 🚵 🎊 1 🔁 🚟 🎀 🔊	
cat	in 🔜 🎊 🕄 🎊 🐨 📷 🖬	
deer	16 🔊 👬 🧩 🛍 🕿 💱	1
dog	in 🕌 🙊 😹 🖉 🎲 🗶 🛸	A ST
frog	💐 🗑 🥌 🧑 蒙 🚽	30
horse	in 🛶 🕍 🛃 🛃 🕍 🌽	
ship	si 🐂 🐮 🙇 🛶 🛥 🛶 🌉	
truck	🗠 🏹 🐌 📾 🎎 🗞 🜮 🐲	

Alex Krizhevsky, "Learning Multiple Layers of Features from Tiny Images", Technical Report, 2009.

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 2 - 18

Example Dataset: CIFAR10

10 classes 50,000 training images 10,000 testing images

Test images and nearest neighbors

Alex Krizhevsky, "Learning Multiple Layers of Features from Tiny Images", Technical Report, 2009.

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 2 - 19

k-Nearest Neighbor on images never used.

- Very slow at test time
- Distance metrics on pixels are not informative

Original image is CC0 public domain

(all 3 images have same L2 distance to the one on the left)

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 2 - 43

Neural Networks (NN)

Neural networks: Architectures

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 4 - 97

April 13, 2017

Activation functions

 $\begin{array}{l} \textbf{Maxout} \\ \max(w_1^T x + b_1, w_2^T x + b_2) \end{array}$

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 4 - 96

April 13, 2017

10

Keras Feed-forward Neural Network

```
4 model = Sequential()
5
6 #layer 1:
7 model.add(Dense(100, input_dim=200, activation='relu'))
8
9 #layer 2:
10 model.add(Dense(50, activation='relu'))
11
12 #output layer:
13 model.add(Dense(5, activation='softmax'))
```

Deep Learning libraries

Deep Learning libraries

Deep Learning Framework Power Scores 2018

Convolutional Neural Networks (CNN)

A bit of history: Gradient-based learning applied to document recognition [LeCun, Bottou, Bengio, Haffner 1998]

LeNet-5

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 5 - 14 April 18, 2017

A bit of history: ImageNet Classification with Deep Convolutional Neural Networks [Krizhevsky, Sutskever, Hinton, 2012]

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

"AlexNet"

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 5 - 15 April 18, 2017

Fast-forward to today: ConvNets are everywhere

Classification

Retrieval

Figures copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 5 - 16 April 18, 2017

Fast-forward to today: ConvNets are everywhere

Detection

Figures copyright Shaoqing Ren, Kaiming He, Ross Girschick, Jian Sun, 2015. Reproduced with permission.

[Faster R-CNN: Ren, He, Girshick, Sun 2015]

Figures copyright Clement Farabet, 2012. Reproduced with permission.

Segmentation

[Farabet et al., 2012]

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 5 - 17 April 18, 2017

No errors

Minor errors

Somewhat related

A white teddy bear sitting in the grass

A man riding a wave on top of a surfboard

A man in a baseball uniform throwing a ball

A cat sitting on a suitcase on the floor

A woman is holding a cat in her hand

A woman standing on a beach holding a surfboard

Image Captioning

[Vinyals et al., 2015] [Karpathy and Fei-Fei, 2015]

Al images are CCP bills domain: https://pixabay.com/en/lugages-trial/gue-tat-1643010/ https://pixabay.com/en/ted/-piush-bears-cute-ted/u-bear-1623438/ https://pixabay.com/en/ted/-tes/second-tes/second-1686776/ https://pixabay.com/en/tes/second-tes/second-1686776/ https://pixabay.com/en/tes/second-1686776/ https://pixabay.com/en/tes/second-168608/ https://pixab

Captions generated by Justin Johnson using Neuraltalk2

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 5 - 23 April 18, 2017

Gatys et al, "Image Style Transfer using Convolutional Neural Networks", CVPR 2016 Gatys et al, "Controlling Perceptual Factors in Neural Style Transfer", CVPR 2017

from a <u>blog post</u> by Google Research. Sh

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 5 - 24 April 18, 2017

Fast-forward to today: ConvNets are everywhere

Photo by Lane McIntosh. Copyright CS231n 2017.

This image by GBPublic_PR is licensed under CC-BY 2.0

NVIDIA Tesla line (these are the GPUs on rye01.stanford.edu)

Note that for embedded systems a typical setup would involve NVIDIA Tegras, with integrated GPU and ARM-based CPU cores.

Fei-Fei Li & Justin Johnson & Serena Yeung

self-driving cars

Lecture 5 - 18 April 18, 2017

Fast-forward to today: ConvNets are everywhere

From left to right: <u>public domain by NASA</u>, usage <u>permitted</u> by ESA/Hubble, <u>public domain by NASA</u>, and <u>public domain</u>.

[Sermanet et al. 2011] [Ciresan et al.] Photos by Lane McIntosh. Copyright CS231n 2017.

Fei-Fei Li & Justin Johnson & Serena Yeung

[Dieleman et al. 2014]

Lecture 5 - 21 April 18, 2017

SO MUCH OF "AI" IS JUST FIGURING OUT WAYS TO OFFLOAD WORK ONTO RANDOM STRANGERS.

Fast-forward to today: ConvNets are everywhere

	-	Spatial stream ConvNet							
nput rideo	single frame	conv1 7x7x96 stride 2 norm. pool 2x2	conv2 5x5x256 stride 2 norm. pool 2x2	conv3 3x3x512 stride 1	conv4 3x3x512 stride 1	conv5 3x3x512 stride 1 pool 2x2	full6 4096 dropout	full7 2048 dropout	softmax
	-	Temporal stream ConvNet							
	multi-frame optical flow	conv1 7x7x96 stride 2 norm. pool 2x2	conv2 5x5x256 stride 2 pool 2x2	stride 1	conv4 3x3x512 stride 1	conv5 3x3x512 stride 1 pool 2x2	full6 4096 dropout	full7 2048 dropout	softmax

[Simonyan et al. 2014]

Figures copyright Simonyan et al., 2014. Reproduced with permission.

Activations of inception-v3 architecture [Szegedy et al. 2015] to image of Emma McIntosh. used with permission. Figure and architecture not from Taigman et al. 2014.

Score

Class id, ranked

Fei-Fei Li & Justin Johnson & Serena Yeung

April 18, 2017 Lecture 5 - 19

Fully Connected Layer

32x32x3 image -> stretch to 3072 x 1

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 5 - 27 April 18, 2017

Convolution Layer

32x32x3 image -> preserve spatial structure

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 5 - 28 April 18, 2017

Convolution Layer

32x32x3 image

5x5x3 filter

Convolve the filter with the image i.e. "slide over the image spatially, computing dot products"

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 5 - 29 April 18, 2017
Filters always extend the full depth of the input volume

5x5x3 filter

Convolve the filter with the image i.e. "slide over the image spatially, computing dot products"

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 5 - 30 April 18, 2017

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 5 - 31 April 18, 2017

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 5 - 32 April 18, 2017

7x7 input (spatially) assume 3x3 filter

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 5 - 42 April 18, 2017

7x7 input (spatially) assume 3x3 filter

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 5 - 43 April 18, 2017

7x7 input (spatially) assume 3x3 filter

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 5 - 44 April 18, 2017

7x7 input (spatially) assume 3x3 filter

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 5 - 45 April 1<u>8, 2017</u>

7x7 input (spatially) assume 3x3 filter

=> 5x5 output

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 5 - 46 April 18, 2017

consider a second, green filter

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 5 - 33 April 18, 2017

For example, if we had 6 5x5 filters, we'll get 6 separate activation maps:

We stack these up to get a "new image" of size 28x28x6!

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 5 - 34 April 18, 2017

Preview: ConvNet is a sequence of Convolution Layers, interspersed with activation functions

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 5 - 35 April 18, 2017

Preview: ConvNet is a sequence of Convolutional Layers, interspersed with activation functions

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 5 - 36 April 18, 2017

Keras Convolutional Neural Network

```
3 model = Sequential()
4
5 model.add(Conv2D(6, (5, 5), activation='relu', input_shape=(32, 32, 3)))
6
7 model.add(Conv2D(10, (5, 5), activation='relu'))
```

Preview

[Zeiler and Fergus 2013]

Visualization of VGG-16 by Lane McIntosh. VGG-16 architecture from [Simonyan and Zisserman 2014].

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 5 - 37 April 18, 2017

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 5 - 38

April 18, 2017

preview:

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 5 - 40 April 18, 2017

Pooling layer

- makes the representations smaller and more manageable
- operates over each activation map independently:

224x224x64

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 5 - 72 April 18, 2017

MAX POOLING

Single depth slice

Fei-Fei Li & Justin Johnson & Serena Yeung

ν

Lecture 5 - 73 April 18, 2017

8

4

Keras Convolutional Neural Network

```
3 model = Sequential()
4
5 model.add(Conv2D(6, (5, 5), activation='relu', input_shape=(32, 32, 3)))
6
7 model.add(Conv2D(10, (5, 5), activation='relu'))
8
9 model.add(MaxPooling2D(pool_size=(2, 2)))
```

Hyperparameters to play with:

- network architecture
- learning rate, its decay schedule, update type
- regularization (L2/Dropout strength)

neural networks practitioner music = loss function

This image by Paolo Guereta is licensed under CC-BY 2.0

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 6 - 81 April 20, 2017

Regularization: Dropout

In each forward pass, randomly set some neurons to zero Probability of dropping is a hyperparameter; 0.5 is common

Srivastava et al, "Dropout: A simple way to prevent neural networks from overfitting", JMLR 2014

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 7 - 60 April 25, 2017

Optimizers

Keras Full Convolutional Neural Network

```
model = Sequential()
model.add(Conv2D(32, (3, 3), activation='relu', input shape=(100, 100, 3))
model.add(Conv2D(32, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool size=(2, 2)))
model.add(Dropout(0.25))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(256, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(10. activation='softmax'))
model.compile(loss='categorical crossentropy', optimizer=Adam(lr = 0.001))
model.fit(x train, y train, batch size=32, epochs=10)
score = model.evaluate(x test, y test, batch size=32)
```

State-of-the-art Neural Networks Architectures

Inception V3 - Google (2015)

ResNet - Microsoft (2015)

NASNet - Google (2018)

2. Neural Architecture Search(NASNet)

Comparison

Keras pretrained Neural Network

