
Week 3: Distributed Computing

Tien-Nam Le

tien-nam.le@ens-lyon.fr
perso.ens-lyon.fr/tien-nam.le/su

Sciences U Lyon



Outline

I Memory Latency

I Clustering Data

I Distributed Computing with Spark



Part 1: Memory Latency



Big Data problem

I The amount of collected data is increasing.

I Before, this can be handled by just increasing computer memory.

I Now we use clusters with many computers for parallel data analysis.

I Question: What makes computation on big data slow? Why do we
need multiple computers?



CPU computation
A computer has two main parts:
I CPU
I Storage



Memory Latency







Questions

Which of the following steps has the lowest step latency?
I Reading from memory
I Performing a CPU operation
I Writing to memory

True or false: Main memory has a higher latency than a mechanical hard
drive.
I True
I False

Where is the result stored immediately following a multiplication
operation?
I L2 cache
I Main memory
I Registers



Summary

I The major source of latency in data analysis is reading and writing
to storage

I Different types of storage offer different latency, capacity and price

I Objective: organizing storage + computation to
I maximizing speed
I minimizing cost.



Trade off

I For a given amount of money: you can buy either, memory that is
fast and small, or memory that is slow and large.

I Caching: combining fast and slow memory, to create storage both
fast and large.



Cache

I Cache hit: the data for computation is in cache

I Cache miss: the data for computation is not in cache

I How to have more cache hit?



Types of locality

I Frequently accessed data should stay in the cache. → Temporal
locality

I Memory is partitioned into blocks (contains several bytes). Data are
moved from memory to cache block by block.

I Data elements should be stored next to each other in the memory.
→ Spacial locality



Simple examples

I Temporal locality:
I Want to compute vector multiplication w · xi for x1, ..., xN

I If size of w fits into cache → fast computation.

I If size of w is larger than size of cache → much slower.

I Spacial locality:
I Want to compute

∑
(xi − xi+1)2 for x1, ..., xN

I xi stored in memory closed to each other → fast computation.

I xi stored randomly → much slower.



Question

Given the following code.

A = [0]*10000
sum = 0
for i in range(10000):

sum += A[i] + i

Determine which type of locality is present:
I Temporal locality

I Spacial locality

I Both

I None



Question

Suppose you have a 16 KiB cache, with a 64 byte block size. You try to
access a 4 byte integer and receive a cache miss. How much data will be
copied to the cache from main memory?
I Only one byte of data can be moved from main memory to the

cache at any one time.

I The amount of data copied to the cache will be the size of the
variable being accessed. In this case, 4 bytes.

I The amount of data copied will be equal to the block size of the
cache. In this case, 64 bytes.

I The amount of data copied to the cache will be equal to the size of
the cache itself. In this case, 16 KiB.

I Data isn’t necessarily copied to the cache upon each cache miss.



Question

How does sorting data improve access latency?
I Temporal locality is improved because data will have been accessed

and copied to the cache during sorting.

I Temporal locality is improved because fewer elements will be
replaced in the cache, allowing the existing elements to be accessed
a greater number of times.

I Spacial locality is improved because all of the data is placed in
adjacent locations in the cache, meaning we don’t have to access
main memory for any of the values after sorting.

I Spacial locality is improved because values are placed in consecutive
memory locations during sorting and multiple values which will be
accessed consecutively will be copied to the cache.



Memory locality: row vs column

I See Jupyter notebook



Conclusions

Impact of memory latency on Big Data:

I Clock rate is stuck at around 3GHz, and is likely to be stuck there
for the foreseeable future.

I Faster computers / disks / networks are expensive

I Focus on data access: The main bottleneck on big data
computation is moving data around, NOT calculation.

I Solution: a cluster of many cheap computers, each with many cores
and divide the data so that each computer has a small part of the
data.

I Question: How to divide data into parts?



Part 2: Clustering Data



What is clustering data?

I Clustering Data: Dividing data into similarity groups called
clusters.

I A cluster is a collection of data elements such that
I elements in the same cluster are “similar”
I elements in different clusters are “dissimilar”.



What we need for clustering

Q1: Need to define ”similarity”
I Numerical:

I Euclidean distance
I Manhattan distance (easier to compute)

I Categorical: Hamming distance



What we need for clustering

Q2: How many clusters?

I Fix the number of clusters beforehand.

I Try and find the best number of clusters



Types of clustering techniques

I ”Flat” techniques: Determine all clusters at once.
I Most popular technique: k-mean

I Hierarchical techniques: repeatedly find clusters based on previous
clusters



K-means clustering example:
step 1



K-means clustering example –
step 2



K-means clustering example –
step 3



K-means clustering example



K-means clustering example



K-means clustering example



Strength and weakness of k-means

Strength: Simple and efficient

Weakness:
I The mean need to be defined. (For categorical data, use mode

instead)
I Need to specify the number k of clusters
I Sensitive to outliers.



Exercises with k-means

I Jupyter notebooks



Hierarchical clustering



Example: biological taxonomy



A Dendrogram



Types of hierarchical clustering

• Divisive (top down) clustering
Starts with all data points in one cluster, the root, then

– Splits the root into a set of child clusters. Each child cluster is 
recursively divided further 

– stops when only singleton clusters of individual data points 
remain, i.e., each cluster with only a single point 

• Agglomerative (bottom up) clustering
The dendrogram is built from the bottom level by

– merging the most similar (or nearest) pair of clusters 

– stopping when all the data points are merged into a single 
cluster (i.e., the root cluster). 



Divisive hierarchical clustering



Agglomerative hierarchical clustering



Single linkage or Nearest neighbor



Complete linkage or Farthest neighbor



Divisive vs. Agglomerative



Exercises with Hierarchical Clustering

I Jupyter notebooks



Part 3: Distributed Computing
with Spark



Installations

I Install Java idk8
https://www.oracle.com/technetwork/java/javase/downloads/jdk8-
downloads-2133151.html.

I Install pyspark in Anaconda
https://anaconda.org/conda-forge/pyspark

I Open a new notebook and run:

from pyspark import SparkContext
sc = SparkContext(master="local[4]")
print(sc)

I The output should be
<SparkContext master=local[4] appName=pyspark-shell>

https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
https://anaconda.org/conda-forge/pyspark


References

I [1] UCSanDiegoX course: Big Data Analytics using Spark

I [2] MIT course: Computational Aspects of Machine Learning


